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Abstract. A class of heterogeneous agent models is investigated where investors switch trading position
whenever their motivation to do so exceeds some critical threshold. These motivations can be psychological
in nature or reflect behaviour suggested by the efficient market hypothesis (EMH). By introducing different
propensities into a baseline model that displays EMH behaviour, one can attempt to isolate their effects
upon the market dynamics. The simulation results indicate that the introduction of a herding propensity
results in excess kurtosis and power-law decay consistent with those observed in actual return distributions,
but not in significant long-term volatility correlations. Possible alternatives for introducing such long-term
volatility correlations are then identified and discussed.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 89.75.Da
Systems obeying scaling laws

1 Introduction

It is hard to overestimate the impact that the concept of
efficient markets has had on economic and political think-
ing. The underlying efficient market hypothesis (EMH) [1]
has enormous philosophical and mathematical appeal but
is perhaps best thought of as a Platonic ideal. The strong
form of the hypothesis is that investors have access to all
relevant information, and that this is fully reflected by
the current market price. The random arrival of new (in-
dependent and identically Gaussian-distributed) informa-
tion causes traders’ expectations to change. This is then
translated into a Brownian motion in, and a Gaussian dis-
tribution of, (log) price returns. There are variations upon
the above reasoning, for example, invoking arbitrageurs or
‘informed’ investors who quickly exploit any inefficiencies
due to ‘noise’ traders or ‘uninformed’ investors but the
pricing outcome is the same. One of the refutable implica-
tions of the EMH is the Gaussian distribution of returns.
Actual distributions however are sufficiently non-Gaussian
so as to require better explanations and mathematical
models than provided by the EMH [2,3].

Two types of assumptions underlie the EMH. Firstly,
there are assumptions about the nature of the informa-
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tion entering the system (for example, its stationarity
and lack of correlations), the dissemination of this data
amongst the market participants, and their ability to eval-
uate and react to it. Given the enormous increase in in-
formation processing speeds, and the rise of instantaneous
mass global communication, it is not implausible to sup-
pose that some EMH violations of this type have become
less important over recent decades.

The second set of assumptions concern the rational-
ity and motivations of the agents themselves, be they in-
dividuals or financial institutions. As regards individuals,
recent work by psychologists and experimental economists
has suggested that deviations from expected utility max-
imisation are widespread, even when ‘smart’ people are
playing ‘simple’ games. Furthermore, there are structural
and institutional features that can undermine the EMH.
Examples include compensation/evaluation/bonus crite-
ria, tax laws, accounting rules, conflicts of interest within
a financial organization and moral hazard problems.

With so many plausible EMH violations (and the im-
possibility of performing controlled experiments with real
markets), it is extremely difficult to draw conclusions re-
garding the chain of cause and effect from statistical anal-
yses alone. However these analyses have identified a set
of ‘stylized facts’ that appear to be prevalent across asset
classes independent of trading rules, geography or culture.
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These include the lack of linear correlations in price re-
turns over all but the shortest timescales, excess kurtosis
(fat-tails) in the price return distribution, volatility clus-
tering and heteroskedasticity. Some finer details have also
been revealed, most notably the existence of power-law
scalings and estimates of the exponents.

The class of models presented here (see also [4–6]) is
an attempt to provide a framework within which to study
systematically the effects of various, simple, EMH vio-
lations. The hope is that the insights gained will result
in both a greater theoretical understanding of the opera-
tion of markets and in better simulation tools for market
practitioners. The modeling process we advocate is based
upon the idea of thresholds. At each point in time, agents
are comfortable with their current position (either long or
short on the market). However, they are subject to one
or more ‘tensions’ which cause a switch in position when-
ever the corresponding threshold is violated. The use of
the word ‘tension’ does not necessarily imply that the re-
sponse is emotional or psychological in nature (although
it may be) — the agent may have buy/sell price triggers
in place based upon analytical research, in which case the
tension level merely reflects the distance from the current
price to the closest threshold.

These models, together with a related approach that
can be applied to Minority Games [7], have been intro-
duced elsewhere [4,5] and the reader is directed to them
for further details. The main contributions of this paper
are to more thoroughly consider the modeling of volatil-
ity clustering and examine the relative performance, in
terms of profits or losses, of the heterogeneous agents.
The paper is organized as follows. In Section 2 we in-
troduce a minimal, baseline, model in which the market
price remains identical to a market operating under the
EMH. By including additional tensions one can then ob-
serve the corresponding changes in the market statistics.
This is performed in Section 3, where a herding propen-
sity is included, resulting in fat-tails and excess kurtosis,
but no long-term volatility correlations. In Section 4 we
discuss different possibilities for generating volatility clus-
tering in the form of slowly-decaying correlations. Finally,
in Section 5 the relative performance of agents with dif-
fering herding propensities is investigated.

2 A threshold model with EMH price returns

The system evolves in discrete timesteps of length h
(which will be chosen to correspond to one trading day
for the simulations in this paper). There are M agents, all
of equal size, who can be either long or short in the market
over the nth time interval. The market price at the end
of the nth time interval is p(n). For simplicity p(0) = 1
and we assume that the system is drift-free so that, in
reality, p(n) corresponds to, say, the price corrected for
the risk-free interest rate plus equity-risk premium or the
expected rate of return. The position of the ith investor
over the nth time interval is represented by si(n) = ±1
(+1 long, −1 short), and the sentiment of the market by

the average of the states of all of the M investors

σ(n) =
1
M

M∑

i=1

si(n). (1)

The change in market sentiment from the previous time
interval is defined by ∆σ(n) = σ(n) − σ(n − 1).

Before defining the model we make the following im-
portant point. We are not attempting to simulate directly
all of the market participants, just those whose trading
strategies are most significant over the timescale of in-
terest. Thus we start by hypothesizing the existence of
some underlying EMH market and change as little as pos-
sible. In particular we shall assume that arbitrageurs and
traders exist who act to interpret the incoming informa-
tion stream and induce the corresponding price changes
over timescales �h. Other market details, such as the way
in which orders are placed and executed, remain unspeci-
fied but constant.

We shall also assume a simple linear relationship be-
tween changes in the sentiment ∆σ and the excess pricing
pressure it induces. This leads us to the following geomet-
ric pricing formula

p(n + 1) = p(n) exp
(√

hη(n) − h/2 + κ∆σ(n)
)

(2)

where
√

hη(n) ∼ N (0, h) represents the exogenous infor-
mation stream. The parameter κ reflects the relative ef-
fects on price of internally generated dynamics as opposed
to the information. Finally, the term −h/2 is the drift cor-
rection required by Itô calculus to ensure that, for κ = 0,
the price p(t) is a martingale. It can be safely omitted
from the model but we choose to include it here for com-
pleteness.

In order to close the model we must now specify how
the states of the individual agents are determined, i.e. how
the ith agent decides when to switch. This is achieved by
introducing an ‘inaction’ pressure. Every time the agent
switches position a pair of threshold prices on either side
of the current price is generated. When the current mar-
ket price crosses one of these threshold values the agent
switches once again, a new pair of thresholds is generated
and the process repeats (more generally, the thresholds
can be updated continuously rather than only when the
agent switches but this appears to make little difference
to the behaviour of the model). An appealing feature of
the inaction pressure is that it is capable of multiple in-
terpretations — at the ‘rational’ end of the spectrum, the
price interval defined by the thresholds corresponds to an
investment strategy based upon the market analysis and
future expectations of that agent. Other effects that can
also be reproduced, are: the psychological factors behind
the desire to cut losses or take profits; transaction costs
and the resulting hysteresis effects; the irrational need for
agents to do something or the (less ir)rational need to
be seen to be doing something (in the case of active-fund
managers, perhaps). Further details can be found in [4].

To define the model precisely, let Pi be the price at
which the ith investor last switched positions and let
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Hi > 0 be a value, chosen randomly at each switching
from the uniform distribution on the interval [HL, HU ].
Then, as long as the current price p(n) stays within the in-
terval [Pi/(1+Hi), Pi(1+Hi)], the investor maintains her
position, but if the current price p(n) leaves this interval,
the investor switches. The choice of a uniform distribution
is made purely on grounds of simplicity — the model ap-
pears to be extremely robust and, in the absence of other
information, there is nothing to be gained by making the
model more complicated than necessary.

The behaviour of the above model is reasonably
straightforward. Provided that M is sufficiently large
(M = 100 appears to be enough [4]), and that the initial
agent states are sufficiently mixed with σ(0) ≈ 0, senti-
ment will remain close to 0 and the price remains close
to its fundamental EMH value. This is because there is
no coupling between agents and their switches in posi-
tion cancel without affecting the sentiment [8]. Thus we
have a model that is very close, both philosophically and
in appearance, to that posited by the EMH — the price
follows a geometric Brownian motion and, if one inter-
prets the inaction pressure in the ‘rational’ way described
above, trading is induced by the differing expectations of
agents. We hesitate to describe the model as efficient since
the volume of trading is determined solely by the inter-
val [HL, HU ]. This implies that excess trading may occur
which is inefficient in the presence of transaction costs.
However such excess trading is another well-documented
feature of actual financial markets [9].

3 Incorporating a herding pressure

There are other pressures affecting investors which, when
included in the model, will not not necessarily cancel out,
most likely due to some form of global coupling. The sim-
plest, and arguably the single most important, example of
such a pressure is the ‘herding tendency’ — while an indi-
vidual/organization is holding a minority opinion/position
they may feel an increasing pressure to conform that even-
tually becomes unbearable (unless enough of the agents
with majority positions switch first), at which point they
will switch to join the majority. Clearly different agents
will have different tolerance levels that are, to some extent,
a reflection of their personality or trading philosophy (such
as ‘momentum traders’ and ‘contrarian investors’). Al-
though it is tempting to describe such herding behaviour
as irrational, or ‘boundedly-rational’ in the sense of Si-
mon [10,11], this may not be a fair characterization in all
cases. Some agents may lose their job/investment capital
if they significantly underperformed the average market or
benchmark return for even a few quarters in a row — such
agents are exhibiting behaviour that is no more irrational
than animals herding when surrounded by predators [12].

We incorporate the herding tendency as follows. At
time n, the herding pressure felt by agent i is denoted by
ci(n). This level is changed to ci(n + 1) = ci(n) + h|σ(n)|
(i.e. is increased by an amount proportional to the length
of the time interval and the severity of the inconsistency)
whenever si(n)σ(n) < 0. Otherwise, the agent’s herding
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Fig. 1. Results of a simulation over 10 000 timesteps. See the
text for details.

pressure remains unchanged and ci(n + 1) = ci(n). As
soon as ci(n) exceeds her (constant) threshold Ci, the in-
vestor switches market position and ci is reset to zero.
Note that the herding pressure levels of every agent in the
minority are increased by the same amount over any given
timestep — the heterogeneity of the agents is reflected in
the differing values of the thresholds Ci. Additionally we
suppose that whenever a switch occurs, both the inaction
and herding pressures are set to zero (although the model
appears to be very robust with respect to such changes in
the interactions between the tensions [4,5]).

We now choose some realistic parameters and present
some numerical results. A daily standard deviation in
price returns of 0.6–0.7% suggests a value for h of 0.00004.
The number of participants M = 100 and it is worth not-
ing that the model’s characteristics are independent of M
— this is an important property not always shared by
other heterogeneous agent models. The simulation is run
for 10 000 timesteps which corresponds to approximately
40 years of trading.

Once h has been fixed, we suppose that the Ci are cho-
sen from the uniform distribution on [0.001, 0.004], as this
leads to herd-induced switching on the timescale of weeks
and months for those agents in the minority. The price
ranges for the inaction tension are chosen randomly after
every switching from the uniform distribution on the inter-
val 10–30%, i.e. [HL, HU ] = [0.1, 0.3]. Day-traders would
of course have much smaller values but our choice of h
means that we cannot attempt to model directly changes
occurring over such short timescales. Finally, simulations
using the above parameters suggest that a value of κ = 0.2
results in prices that are strongly correlated with the in-
formation stream but which differ significantly during pe-
riods of extreme market sentiment.

Figure 1 shows the output of a typical run. Figure 1a
plots the output price p(t) (solid curve) against the ‘fun-
damental’ price (dashed curve) obtained by setting κ = 0
(which decouples the price from the agent dynamics and
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generates a pure geometric Gaussian price stream). It
should be noted that the agents typically switch every
few weeks or months and that the vast majority of trades
are due to the inaction thresholds being violated. However
the sentiment σ, as can be seen in Figure 1b, changes more
slowly and can remain bullish or bearish for several years.
Figure 1c plots the frequency of the daily log price returns.
Fat-tails displaying power-law behaviour with exponents
in the range [2.8, 3.2] are observed [5] (together with kur-
tosis values in the approximate range [10, 50]). Finally Fig-
ure 1d plots the autocorrelation functions of both the price
returns and absolute price returns — a standard measure
of volatility. The price returns autocorrelation function is
very close to zero and shows no evidence of linear correla-
tions even for a lag of just one trading day. The volatility
correlations however die away after just 5 days or so. This
lack of long-term volatility correlations or memory is the
subject of the next section.

To recap, the introduction of herding does indeed gen-
erate fat-tails with decay rates that fit values extracted
from actual market data. Further details, together with
a ‘computational experiment’ that shows how to generate
second-order effects such as observed asymmetries in the
price return data with respect to positive and negative
price moves can be found in [5].

4 Simulating clustered volatility

Market models must be able to approximate the statistical
properties of the market volatility which we define as the
absolute log-price return

∣∣∣ log p(n+1)
p(n)

∣∣∣. However the causes
of volatility clustering and long-memory are still poorly
understood and there are several plausible mechanisms,
all of which may play a significant role. There have been
numerous studies investigating the relationship between
volatility and other market variables, such as trading vol-
ume, but the question is still far from being resolved (see,
for example, [13–16] and references therein).

One possibility is that the clustering is due to non-
stationarity and/or long-time correlations in the exoge-
neous information stream. This is certainly plausible —
geopolitical events and changes in economic conditions
are rarely revealed by a single pulse of information enter-
ing the market, but rather unfold over a period of time.
For the models of Sections 2 and 3 these effects could be
incorporated by replacing η(n) with time series derived
from fractional Brownian processes, stochastic volatility
models, or GARCH-type processes (although one must be
careful to ensure that no correlations are introduced into
the returns themselves [17]). However, certainly within the
context of heterogeneous agent models (HAMs), these pos-
sibilities tend to be ignored, perhaps because it is more
interesting to develop market ‘black boxes’ where all the
non-Gaussian effects are generated internally. It is also
possible to generate volatility clustering within HAMs via
inductive learning and evolutionary strategies. To include
such effects into our threshold models is certainly achiev-
able (by choosing the inaction thresholds Hi to reflect the

agents’ current strategy) but the resulting models are ex-
tremely complex and have not been considered so far.

In the majority of HAMs that display clustered volatil-
ity, the underlying mechanism appears to be the ability
of agents to switch between different ‘fundamentalist’ and
‘chartist’ strategies (for example, the Lux-Marchesi model
[18]). Fundamentalist traders are betting that the price
will quickly revert to some underlying rational price while
the chartists believe that the recent price-trend will con-
tinue. Large deviations from the rational price tend to
occur whenever the proportion of chartists exceeds some
critical value. In our threshold models the M agents being
directly simulated are all of the same qualitative type so
this switching between groups cannot happen. However,
these agents do not constitute the entire market since
short-term noise traders are excluded. We now hypoth-
esize that the number and activity-level of these traders
is not constant in time but instead depends upon market
conditions. The simplest scenario is that their effect upon
the market is a function of overall sentiment. There is some
evidence to support this correlation between volatility and
(both bullish and bearish) sentiment from closed-end in-
vestment funds [19] (together with strong indications that
the increases in volatility during times of extreme market
sentiment were indeed due to noise traders rather than
excess trading by fundamentalist investors).

Thus we replace the pricing formula (2) with

p(n + 1) = p(n) exp
((√

hη(n) − h/2
)

f(σ) + κ∆σ(n)
)

(3)
and assume a simple linear dependence of f upon |σ|,
i.e. f(σ) = 1 + α|σ| (setting α = 0 reverts to the model
of Sect. 3). A simulation using α = 2, and keeping all
other parameters unchanged from Section 3, is plotted in
Figure 2. As can be seen in Figure 2d the price correlation
(lower curve) is still zero but there is now a noticeable
slow decay in the volatility correlation (upper curve). A
more detailed analysis, provided in [5], shows that the
rate of decay of the volatility autocorrelation function is
consistent with a power-law process with exponent in the
range 0.3–0.5.

It should be remarked that these threshold models are
non-Markovian since the agents’ tension levels are highly
dependent upon the past behaviour of the system. This
memory effect seems to be fundamental to the formation
and collapse of the extended periods of mis-pricing that
occur (and the corresponding fat-tails). However, the long-
time volatility correlation introduced by (3) is not due to
memory-effects. Rather, the price volatility due to exter-
nal information now depends, via the function f(σ) in (3),
upon a slowly-changing system variable, the sentiment σ,
and inherits its slow autocorrelation decay.

5 Profitability of traders

Finally we perform an interesting numerical experiment.
Note that the agents’ inaction thresholds change at ev-
ery switching (to reflect updated future expectations) but
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Fig. 2. The same data are plotted as in Figure 1 with but
using the pricing formula (3).

their herding thresholds do not. This is because we con-
sider the latter to be a measure of each agent’s trading phi-
losophy or personality and so more likely to remain con-
stant over time. This raises the question of whether there
is an observable difference in the relative performance be-
tween agents whose herding threshold values Ci lie within
the range [0.001, 0.004] used in the simulations. Such a
difference would suggest, within this modeling framework,
the possibility of elementary but effective inductive learn-
ing strategies that simply consist of agents ‘training’ them-
selves to change their herding propensity.

To answer this question we keep track of the agents’
profit or loss at each transaction during the simulation
(note that the agents’ financial performance does not af-
fect their behaviour, although the reproduction of more re-
alistic psychological pressures would probably include fac-
tors such as these). The agents are always assumed to hold
±1 units of the underlying asset and an inexhaustible cash
supply to fund the transactions. The performance over the
first 1000 timesteps is ignored to exclude transient effects
caused by the externally imposed initial conditions.

The performance of the agents is displayed in Figure 3
where the overall profit or loss is plotted against that
agent’s herding threshold Ci. There is no significant cor-
relation between profits and herding propensity and of
course if transaction costs are taken into account then
agents with lower thresholds would actually perform rel-
atively worse. The reason for this lack of correlation be-
tween herding propensity and performance, at least for
the parameters used in the simulation, is that the major-
ity of trades for any given agent are caused by violations of
the inaction threshold, rather than the herding threshold.
Taken together, the wide variations in performance dis-
played in Figure 3 and the lack of an obvious category of
‘successful’ or ‘unsuccessful’ agents are further reassuring
aspects of the model. However, as suggested in Section 4,
more sophisticated versions of the model may allow the in-
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ing threshold. No significant correlation is observed.

action thresholds to be determined by trading strategies
that include analysis of the sentiment history σ(k), k ≤ n,
rather than being reset randomly after every trade. Agents
employing such strategies may be able to significantly out-
perform (or underperform) the market, and indeed many
such sentiment-based trading strategies are actually used
in practice.

6 Concluding remarks

The class of threshold HAMs studied here incorporates
enough psychology to simulate realistic market behaviour
but alternative or additional modeling assumptions (either
regarding the pricing formula, exogeneous information or
agent behaviour) can easily be incorporated. Such inves-
tigations may play a useful role in isolating the causes of
important phenomena such as volatility clustering.

HAMs are difficult to analyze but, since all the cou-
pling is global, a well-justified case can be made for passing
to the mean-field limit. The resulting objects are stochas-
tic difference equations coupled to deterministic ones; see
[20] for an initial study of such a model. Future work will
aim to use the theory of discrete random dynamical sys-
tems [21] in order to elucidate, inter alia, the reasons for
the appearance of power laws in such systems.

References

1. E. Fama, J. Finance 25, 383 (1970)
2. R. Mantegna, H. Stanley, An Introduction to Econophysics

(CUP, 2000)
3. R. Cont, Quantitive Finance 1, 223 (2001)
4. R. Cross, M. Grinfeld, H. Lamba, T. Seaman, Phys. A 354,

463 (2005)



218 The European Physical Journal B

5. H. Lamba, T. Seaman, preprint, Econophysics forum
6. B. LeBaron, in Post-Walrasian Economics, edited by

D. Colander (CUP, New York, 2006)
7. R. Cross, M. Grinfeld, H. Lamba, A. Pittock, in Relaxation

Oscillations and Hysteresis, edited by M. Mortell, R.O. Jr,
A. Pokrovskii, V. Sobolev (SIAM, 2005), pp. 61–72

8. B. Malkiel, J. Econ. Perspectives 17, 59 (2003)
9. A. Schleifer, Inefficient Markets, Clarendon Lectures in

Economics (OUP, 2000)
10. H. Simon, Quart. J. Econ. 69, 99 (1955)
11. H. Simon, Models of Bounded Rationality (MIT Press,

1997)
12. C. Chamley, Rational Herds (CUP, 2004)

13. I. Lobato, C. Velasco, J. Bus. Econ. Stat. 18, 410 (2000)
14. L. Gillemot, J.D. Farmer, F. Lillo, Quant. Fin 371 (2006)
15. T. Ane, H. Geman, J. Finance 55, 2259 (2000)
16. C. Jones, G. Kaul, M. Lipsom, Rev. Fin. Stud., 631 (1994)
17. R. Baillie, T. Bollerslev, H. Mikkelsen, J. Econometrics, 3

(1996)
18. T. Lux, M. Marchesi, Int. J. Theor. Appl. Finance 3, 675

(2000)
19. G. Brown, Financial Analysts Journal, 82 (1999)
20. R. Cross, M. Grinfeld, H. Lamba, J. Phys. 55, 55 (2006)
21. P. Diaconis, D. Freedman, SIAM Rev. 41, 45 (1999)


